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Energy Transfer and distance dependency 

Energy transfer is dominated by multipole and exchange interaction.  For multipole interactions, dipole-dipole 

(Förster resonance energy transfer1), dipole-quadrupole, and quadrupole-quadrupole terms are relevant.  The 

energy transfer rate constants for these terms (Wdd, Wdq, and Wqq) are given by the following expression for two-

atom system2–4: 

𝑊dd = 
2𝜋

ħ
 
2

3
  

𝑒4

𝑅6 |⟨A′|𝑫1|A⟩|2|⟨B|𝑫1|B′⟩|2 F ,                                                               (10) 

𝑊dq = 
2𝜋

ħ
 
𝑒4

𝑅8 [|⟨A′|𝑫1|A⟩|2|⟨B|𝑫2|B′⟩|2 + |⟨A′|𝑫2|A⟩|2|⟨B|𝑫1|B′⟩|2] F ,                  (11) 

𝑊qq = 
2𝜋
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𝑒4

𝑅10 |⟨A′|𝑫2|A⟩|2|⟨B|𝑫2|B′⟩|2 F ,                                                            (12) 

where R is the distance between a donor (A) and an acceptor (B), F is the sum over Franck-Condon factors and 

spectral overlap, the matrix element ⟨X′|𝑫𝑙|X⟩ is the transition dipole (l = 1) or quadrupole (l = 2) moment of the 

transition from state X’ to X.  For the exchange interaction Wex
3–5, 

𝑊ex = 
2𝜋

ħ
 |⟨4𝑓A|4𝑓B⟩|4 |⟨AB′|∑ (

1

2
+ 2𝑠𝑖 · 𝑠𝑗)

𝑒2

𝑟𝑖𝑗
𝑖𝑗 |A′B⟩|

2

 F ,                                   (13) 

where ⟨4𝑓A|4𝑓B⟩2 is the Mülliken-type approximated radial overlap integral and ⟨AB′| ∑ (
1

2
+ 2𝑠𝑖 · 𝑠𝑗)

𝑒2

𝑟𝑖𝑗
𝑖𝑗 |A′B⟩ 

is the exchange integral.  The energy transfer rate when considering only the exchange integral is often 

approximated in a well-known Dexter’s formulation as, 

𝑊Dexter = 𝑘0𝑒
−

2𝑅

𝐿  ,                                                                     (14) 

where 𝑘0 is a constant consisting of normalized spectral overlap integral and orbital interactions, and L is effective 

Bohr radius. 

Equations (10) – (12) indicate that dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole interactions 

have the donor-acceptor distance dependence of 6th power, 8th power, and 10th power, respectively.  Meanwhile, 

equation (13) shows that the exchange interactions depends on radial overlap integral and exchange integral.  Since 

radial overlap integral is also distance dependent, the distance dependence of Wex goes beyond single-exponential. 

In Tb9 clusters, the closest Tb(III)-Tb(III) pairs are separated by 3.65 Å.  At this distance, all multipole 

interaction may have contributions that cannot be ignored.  For instance, Malta reported that theoretically, 

quadrupole-quadrupole interaction is the main mechanism of energy transfer in the distance below 4 Å in an 

Yb(III)-Yb(III) pair, and exchange interactions also have some contribution.  This may also be the case for Tb(III)-

Tb(III) pair, although the energy transfer rate is expected to be smaller than Yb(III)-Yb(III) pair since oscillator 

strength of 7F6→5D4 transition of Tb(III) is usually two orders of magnitude smaller than 7F7/2→7F5/2 transition of 

Yb(III).6,7  In such case, any other pairs than the closest Tb(III)-Tb(III) pairs may have relatively much smaller 

energy transfer rate. 

In the Theoretical Background section, for the sake of discussion and for simplicity, only the dipole-dipole 

interaction was considered.  However, from the above considerations, we have also calculated a case where TbET 

only occur for the closest Tb(III)-Tb(III) pairs.  This means that kTbET = 0 s-1 for any other pairs.  The results are 

shown in Table S1.  These values are almost identical to the values calculated in the Theoretical Background 

section with the difference of less than 0.01%.  This indicates that the type of interaction in Tb9 cluster does not 

significantly affect the outcome. 

 

Table S1.  Calculated lifetimes, quantum yields and BET efficiencies of Tb9 cluster  

                   with TbEnT only considered for the closest pair. 

𝑘TbET / s-1 𝜏calc / μs 𝛷ππ∗,calc 𝜂BET,calc 

50000 (presence of TbET) 720 14.1% 44.3% 

0 (absence of TbET) 685 13.4% 47.2% 
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Rate equation with different input function 

This section presents procedures for obtaining an appropriate rate equation for Tb9 clusters with different 

excitation method.  Equation (1) is considered as an inhomogeneous system of linear ordinary differential equation 

in the matrix form.  An analytical solution of Equation (1) with general input function J(t) when initial value X(0) 

= 0 is: 

X(t) = ∫ e𝑨(𝑡−𝑡′)𝑡

0
J(𝑡′)d𝑡′  .                                                             (15) 

The final result was obtained after input of numerical values to the coefficients.  Since direct calculation of matrix 

exponential eAt is time consuming and sometimes unsolvable analytically, diagonalization was performed.  

MATLAB was used to solve the system of differential equations. 

Short-pulse ligand excitation.  For short-pulse ligand excitation of Tb9 cluster, the input function consists of 

Dirac’s delta function 𝛿(𝑡′) for the excited singlet state (S1 specie) and 0 for other species.  The input function 

J(t) (Equation (8)) becomes: 

J(t) = (

𝛿(𝑡′)
0
⋮
0

)  .                                                                     (16) 

With this input function, Equation (15) becomes: 

X(t) = e𝑨𝑡B  ,                                                                         (17) 

where   B = (

1
0
⋮
0

)  . 

This gives population density decay of nonanuclear Tb(III) cluster normalized at 1. 

Steady-state excitation.  For steady state ligand excitation of nonanuclear Tb(III) cluster, the input function 

consists of a constant for excited singlet state (S1 specie) and 0 for other species.  The input function becomes: 

J(t) = (

1
0
⋮
0

)  .                                                                       (18) 

With this input function, Equation (15) becomes: 

X(t) = A-1 (e−𝑨𝑡- 𝑬)B = A-1(e𝑨𝑡- E)B  ,                                                      (19) 

where   B = (

1
0
⋮
0

)  . 

E is an identity matrix.  By multiplying the radiative rate constant kr to a specific element of X(t) (specie of Tb9 

cluster), quantum yield of the specie can be obtained.  In the case of quantum yield of Tb(III) ion emission, this 

would be: 

𝛷𝜋𝜋∗calc  = 𝑘rTb(Tb1(t) + Tb2(t) + ··· + Tb8(t) + Tb9(t))  .                                     (20) 

BET efficiency 𝜂BET,calc is defined by the percentage of loss of population density of Tb(III) ions in the presence 

of BET to when BET is absent. 

ηBET = 
[Tb1(𝑡) + Tb2(𝑡) + ··· + Tb8(𝑡) + Tb9(𝑡)]𝑘BET=0− [Tb1(𝑡) + Tb2(𝑡) + ··· + Tb8(𝑡) + Tb9(𝑡)]𝑘BET=3000

[Tb1(𝑡) + Tb2(𝑡) + ··· + Tb8(𝑡) + Tb9(𝑡)]𝑘BET=0
  .  (21) 

Although Equation (19) is time dependent (and therefore Equation (20) and (21) as well), when sufficient time (in 

the order of few seconds) has elapsed from initiation of steady-excitation, it converges to a certain value and 

becomes time independent. 
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TbET rate constant dependency in absence of BET 

TbET rate constant dependency on the lifetime of Tb9 cluster in the absence of BET was evaluated by the same 

method presented in the Theoretical Background section, but with different values for TbET rate constant 𝑘TbET 

(0, 500, 5000, and 50000 s-1).  BET rate constant 𝑘BET is 0 s-1, representing the absence of BET.  All other rate 

constants 𝑘rS1  + 𝑘nrS1 , 𝑘iscS1 , 𝑘rT1  + 𝑘nrT1 , 𝑘PSET , 𝑘rTb , and 𝑘nrTb  are the same as those used in the 

Theoretical Background section.  Calculated lifetime 𝜏calc, quantum yield 𝛷ππ∗,calc, and BET efficiency 𝜂BET,calc 

are summarized in Table S1.  No dependency of TbET rate constant on the lifetime and quantum yield of Tb9 

cluster was observed, indicating that TbET serves no role in changing the photophysical properties of Tb9 cluster 

in the absence of BET. 

 

Table S2.  TbET rate constant dependency on theoretical lifetime in absence of BET. 

𝑘TbET / s-1 𝜏calc / µs 𝛷ππ∗,calc 𝜂BET,calc 

0 1300 25.28% 0% 

500 1300 25.28% 0% 

5000 1300 25.28% 0% 

50000 1300 25.28% 0% 
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Population density decay and quantum yield of hypothetical cluster 

The hypothetical cluster is a nonanuclear Tb(III) cluster where Tb9 is also involved in BET with the same rate as 

in Tbm (m = 1 – 8).  Comparison with theoretical population density decay and quantum yield of Tb9 cluster shows 

that the existence of Tb9 (BET does not efficiently take place) is important.  The rate Equation (1) was solved 

with coefficient matrix Ah: 

Ah = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −

1

𝜏S1

0 0 0 0 0 0 0 0 0 0

𝑘isc −
1

𝜏T1

𝑘BET 𝑘BET 𝑘BET 𝑘BET 𝑘BET 𝑘BET 𝑘BET 𝑘BET 𝑘BET

0 𝑘PSET −
1

𝜏Tb𝑚

𝑘TbET 𝑘TbET 0.13𝑘TbET 0.07𝑘TbET 0.02𝑘TbET 0.07𝑘TbET 0.02𝑘TbET 𝑘TbET

0 𝑘PSET 𝑘TbET −
1

𝜏Tb𝑚

0.13𝑘TbET 𝑘TbET 0.07𝑘TbET 0.07𝑘TbET 0.02𝑘TbET 0.02𝑘TbET 𝑘TbET

0 𝑘PSET 𝑘TbET 0.13𝑘TbET −
1

𝜏Tb𝑚

𝑘TbET 0.02𝑘TbET 0.07𝑘TbET 0.02𝑘TbET 0.07𝑘TbET 𝑘TbET

0 𝑘PSET 0.13𝑘TbET 𝑘TbET 𝑘TbET −
1

𝜏Tb𝑚

0.02𝑘TbET 0.02𝑘TbET 0.07𝑘TbET 0.07𝑘TbET 𝑘TbET

0 𝑘PSET 0.07𝑘TbET 0.07𝑘TbET 0.02𝑘TbET 0.02𝑘TbET −
1

𝜏Tb𝑚

𝑘TbET 𝑘TbET 0.13𝑘TbET 𝑘TbET

0 𝑘PSET 0.02𝑘TbET 0.07𝑘TbET 0.07𝑘TbET 0.02𝑘TbET 𝑘TbET −
1

𝜏Tb𝑚

0.13𝑘TbET 𝑘TbET 𝑘TbET

0 𝑘PSET 0.07𝑘TbET 0.02𝑘TbET 0.02𝑘TbET 0.07𝑘TbET 𝑘TbET 0.13𝑘TbET −
1

𝜏Tb𝑚

𝑘TbET 𝑘TbET

0 𝑘PSET 0.02𝑘TbET 0.02𝑘TbET 0.07𝑘TbET 0.07𝑘TbET 0.13𝑘TbET 𝑘TbET 𝑘TbET −
1

𝜏Tb𝑚

𝑘TbET

0 𝑘PSET 𝑘TbET 𝑘TbET 𝑘TbET 𝑘TbET 𝑘TbET 𝑘TbET 𝑘TbET 𝑘TbET −
1

𝜏Tb9]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(22) 

Unlike Equation (3) (coefficient matrix A), row 2 column 11 of coefficient matrix Ah is 𝑘BET and row 11 column 

2 is 𝑘PSET instead of 0.  This gives almost fully identical quenching environment of Tb9 to Tbm (m = 1 – 8). 

 

 

Table S3.  Calculated quantum yield and BET efficiency of hypothetical 

                    cluster of nine Tb(III) ions in direct contact with ligands. 

𝑘TbET / s-1 𝜏calc / μs 𝛷ππ∗,calc 𝜂BET,calc 

50000 (presence of TbET) 713 14.31% 44.90% 

0 (absence of TbET) 713 14.31% 44.90% 
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ORTEP of Gd9 cluster 

 

Figure S1.  ORTEP representation of Gd9 cluster.  Color legend: gadolinium (blue), oxygen (red), carbon (grey), 

nitrogen (purple), hydrogen (white).  Thermal ellipsoids are represented in 50% probability. 

 

Table S4.  Distance between Gd(III) ions for all combinations. 

Combination* Distance / Å Combination* Distance / Å Combination* Distance / Å 

Gd1-Gd2 3.631 Gd1-Gd4 5.153 Gd4-Gd5 7.203 

Gd2-Gd4 3.638 Gd2-Gd3 5.128 Gd4-Gd7 7.086 

Gd4-Gd3 3.631 Gd5-Gd8 5.128 Gd3-Gd5 7.104 

Gd3-Gd1 3.640 Gd6-Gd7 5.153 Gd3-Gd6 7.203 

Gd5-Gd6 3.631 Gd1-Gd5 5.618   

Gd6-Gd8 3.638 Gd1-Gd7 5.717   

Gd8-Gd7 3.631 Gd2-Gd5 5.749   

Gd7-Gd5 3.640 Gd2-Gd6 5.622   

Gd9-Gd1 3.698 Gd3-Gd7 5.618   

Gd9-Gd2 3.691 Gd3-Gd8 5.749   

Gd9-Gd3 3.710 Gd4-Gd6 5.764   

Gd9-Gd4 3.709 Gd4-Gd8 5.622   

Gd9-Gd5 3. 710 Gd1-Gd6 7.086   

Gd9-Gd6 3.709 Gd1-Gd8 7.168   

Gd9-Gd7 3.698 Gd2-Gd7 7.168   

Gd9-Gd8 3.691 Gd2-Gd8 7.070   

*The labels of the Gd ions in this table are based on the labels used in Theoretical Background section 

and not the labels in the CIF file for consistency with the main text. 
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Continuous Shape Measure (CShM) and Shape Measure 

Continuous shape measure (CShM) calculates the deviation of the vertices of an actual structure to the vertices of 

an ideal structure.  The CShM criterion 𝑆CShM is given by the following equation:8,9 

𝑆CShM = min 
∑ |𝑸𝑘−𝑷𝑘|2𝑁

𝑘

∑ |𝑸𝑘−𝑸0|2𝑁
𝑘

 × 100  ,                                                       (23) 

where 𝑸𝑘 is the vertices of an actual structure, 𝑸0 is the center of mass of an actual structure, 𝑷𝑘 is the vertices 

of an ideal structure, and N is the number of vertices.  In the case of Gd9 cluster, for each Gd(III) ion, N equals 9 

(Gd(III) ion and eight oxygen atoms).  CShM calculation takes accounts of the deviation of the metal atom from 

the center of mass. 

On the other hand, shape measure (ShM) calculates the deviation of the dihedral angles of an actual structure 

to the dihedral angles of an ideal structure.  The ShM criterion 𝑆ShM is given by the following equation:10 

𝑆ShM = min √
1

𝑀
∑ (𝛿𝑖 − 𝜃𝑖)

2𝑀
𝑖  × 100  ,                                               (24) 

where 𝛿𝑖  is the vertices of an actual structure, 𝜃𝑖 is the center of mass of an actual structure, and M is the number 

of dihedral angles.  In the case of Gd9 cluster, for each Gd(III) ion, M equals 18.  Since dihedral angles are 

independent of the effect of the distortion of the metal ion, ShM calculations do not take into consideration of the 

distortion of the metal ion. 

Table S4 summarizes the difference in 𝑆CShM values when the metal ion is taken into consideration to those 

of when metal ion are not considered.  The importance of considering the deviation of the metal atom from the 

center of mass of a structure lies in the fact that without such consideration, the S values were smaller.  This 

indicates that when the metal ion is not considered, the actual structure is calculated to be closer to ideal.  Therefore, 

inclusion of the metal ion is indeed important to derive more accurate result.  It is essential to point out that the 

𝑆CShM  value of Gd9 calculated with and without the metal ion was almost identical.  This implies that the 

distortion of the structure of Gd9 was purely due to the position of the oxygen atoms. 

 

 

Table S5.  Calculated S_CShM values for all Gd(III) ions with and without including metal ion. 

Gd(III) ion 𝑆SAP (without) 𝑆SAP (with) 𝑆TDH (without) 𝑆TDH (with) 

Gd1 4.670 4.725 2.920 2.976 

Gd2 4.532 4.588 2.646 2.704 

Gd3 4.752 4.813 2.774 2.836 

Gd4 4.746 4.822 2.435 2.513 

Gd5 4.752 4.813 2.774 2.836 

Gd6 4.746 4.822 2.435 2.513 

Gd7 4.670 4.725 2.920 2.976 

Gd8 4.532 4.588 2.646 2.704 

Gd9 0.082 0.082 2.481 2.481 

𝑆SAP and 𝑆TDH are S values calculated for an 8-coordinated square antiprism and an 8-coordinated trigonal 

dodecahedron, respectively.  Label in parentheses indicates whether metal ion has been taken into consideration 

or not.  The labels (numbering) of Gd(III) ions are based on the labels used for Tb9 cluster in the Theoretical 

Background section. 
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Figure S2.  a) Powder XRD pattern of TbnGd9-n clusters.  Inverse triangle represents peaks of Si power as a 

standard, and black dots represent the main peaks.  b) FAB-MS results of TbnGd9-n clusters.  Broadening of the 

peak with increasing number of Gd(III) ions are due to stable isotopes.11 
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Figure S3.  Absorption spectrum of Gd9 cluster in 1.0×10-4 M chloroform solution.  1 mm optical path cell was 

used for measurement. 
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Figure S4.  Normalized emission spectra of Tb9 cluster in powder form and 1.0×10-4 M chloroform solution.  

The spectra were normalized at peak top of 5D4→7F5 transition (548 nm).  Excitation wavelength was 380 nm. 
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Figure S5.  Emission spectrum of Gd9 cluster in 1.0×10-4 M chloroform solution at 210 K.  Excitation wavelength 

was 380 nm.  
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Figure S6.  Arrhenius plot of Tb1Gd8 cluster from 280－309 K based on Equation (9).  Red line represents 

linearly fitted line.  The inclination represents –
𝐸𝑎BET

𝑅
, allowing calculation of activation energy of BET. 
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